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Abstract
Neuromodulatory techniques have been studied to treat drug addiction or compulsive eating as well as different chronic 
pain conditions, such as neuropathic and inflammatory pain in the clinical and preclinical settings. In this study, we aimed 
to investigate the effect of transcranial direct current stimulation (tDCS) on the association of alcohol withdrawal with 
neuropathic pain based on nociceptive and neurochemical parameters in rats. Thirty-six adult male Wistar rats were rand-
omized into five groups: control, neuropathic pain, neuropathic pain + tDCS, neuropathic pain + alcohol, and neuropathic 
pain + alcohol + tDCS. The neuropathic pain model was induced by chronic constriction injury (CCI) to the sciatic nerve. 
Rats were then exposed to alcohol (20%) by oral gavage administration for 15 days (beginning 24 h after CCI). tDCS was 
started on the 17th day after surgery and lasted for 8 consecutive days. The nociceptive test (hot plate) was performed at 
baseline, 16 days after CCI, and immediately and 24 h after the last session of tDCS. Rats were killed by decapitation, and 
structures were removed and frozen for biochemical analysis (nerve growth factor and interleukin (IL-1α, IL-1β, and IL-10 
measurements). Neuropathy-induced thermal hyperalgesia was reversed by tDCS, an effect that was delayed by alcohol 
abstinence. In addition, tDCS treatment induced modulation of central levels of IL-1α, IL-1ß, and IL-10 and neurotrophic 
growth factor. We cannot rule out that the antinociceptive effect of tDCS could be related to increased central levels of IL-1α 
and IL-10. Therefore, tDCS may be a promising non-pharmacological therapeutic approach for chronic pain treatment.
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Introduction

Neuropathic pain (NP) is a relevant clinical problem since 
it is severely debilitating and largely resistant to treatment 
because its mechanisms are poorly understood [1]. Similarly, 
alcohol abuse is an extremely serious public health problem 
because alcohol is the most widely used addictive substance 
worldwide [2]. Alcohol consumption is also a risk factor for 
many chronic diseases, with its effects dependent on volume, 
alcohol content, and frequency of use [2, 3]. Taken together, 
these conditions change neurotransmitter levels, leading to 
changes in widespread modulation of neuronal activity [4].

Chronic alcohol exposure or withdrawal may cause det-
rimental impairment of the nociceptive system. A system-
atic review and meta-analysis [5] reported an association 
between chronic pain and alcohol use, which can be related 
to dysfunction in the neuro-immuno-endocrine circuitry, 
leading to greater susceptibility to substance abuse, includ-
ing alcohol abuse. It is related to dopaminergic imbalance 
in the mesocorticolimbic pathway [6] and changes in the 
reward system through dopaminergic signaling pathways 
between the ventral tegmental area, nucleus accumbens, 
and medial prefrontal cortex as observed in conditioned 
place preferences for pain in rats [7]. This modulation is 
similar to those reported in brain areas activated by alcohol-
induced analgesic effects [8, 9]. This hypothesis is supported 
by reports showing that 25% of individuals who use alcohol 
aim to relieve some type of pain [10–13]. The use of alcohol 
induces analgesia in humans and animals due to changes in 
the central and peripheral nervous systems. However, these 
effects can lead to positive feedback loops and contribute 
to alcohol abuse [14]. It is important to note that the previ-
ous preclinical study of the research group demonstrated 
that protracted alcohol withdrawal produced an analgesic 
effect indexed via an increased nociceptive threshold, which 
can be related to the increased central levels of BDNF and 
IL-10 [15]. On the other hand, some studies showed that 
alcohol withdrawal can trigger hyperalgesia as a compo-
nent of withdrawal syndrome [16, 17]. The side effects of 
alcohol abstinence (hyperexcitability, anxiety, sleep disor-
ders, and dysphoria, among others) also contribute to alco-
hol abuse as well as relapse [12, 18, 19]. In such instances, 
alcohol is consumed in increasing quantities to alleviate the 
motivational symptoms triggered by withdrawal [20, 21]. 
Paradoxically, hyperalgesic alcoholics respond better to the 
analgesic effects of alcohol than non-users, and this can be 
attributed to the belief that alcohol normalizes perceptions 
of pain and discomfort [22]. Additionally, a greater tendency 
toward familial alcoholism in the presence of chronic pain 
has been suggested [23].

It should also be stressed that both chronic pain and 
alcohol exposure/withdrawal lead to modifications in 

both central and peripheral neuroinflammatory patterns 
[2, 15, 24]. For example, previous studies have reported 
altered patterns of cytokines and neurotrophic factors 
following inflammatory and chronic pain injury models 
throughout the cortex-brainstem-spinal cord axis [25, 26]. 
Additionally, binge drinking and binge-like alcohol expo-
sure induced the production of several cytokines, such as 
interleukins IL-10, IL-1α, and IL-1β, showing that both 
interventions can cause broad neuroimmune signaling 
throughout the peripheral and central nervous systems [2, 
15, 27, 28]. Thus, it should be emphasized that an inter-
mingled relationship between neuroimmunomodulatory 
and behavioral changes is involved in neuropathic pain 
and symptoms of alcohol withdrawal, with new therapeutic 
approaches required to better understand and treat these 
conditions.

`Non-invasive brain stimulation techniques (NIBS) have 
been used to treat different conditions such as inflammatory 
and neuropathic pain in clinical [29] and preclinical settings 
[26, 30]. These neuromodulatory techniques can reduce 
cravings in individuals with drug addiction [31] or compul-
sive eating [32, 33]. Transcranial direct current stimulation 
(tDCS) is notable in that it is considered a safe, low-cost, 
and an easily applied technique for modulating the neuronal 
membranes’ resting potential using a weak electrical cur-
rent applied through the scalp [34, 35]. The analgesic effects 
of tDCS have also been demonstrated in clinical studies by 
reducing pain scores and the frequency of analgesic use in 
different chronic pain states [29, 36] probably due to its abil-
ity to modulate cortical and subcortical structures directly or 
indirectly involved in inhibitory descending pain control [29, 
32, 37]. The neuromodulatory features of tDCS corrobo-
rate its use as a non-pharmacological approach modulating 
behavior and neuroimmune alterations induced by chronic 
pain and alcohol abstinence.

Thus, we aimed to investigate the effect of tDCS treat-
ment on the association between neuropathic pain and alco-
hol withdrawal based on the nociceptive and neurochemical 
parameters of rats. Furthermore, we hypothesized that the 
use of tDCS as a neuromodulatory tool would lead to modifi-
cation of pain thresholds accompanied by changes in central 
biomarker levels.

Methods

Animals

Thirty-six male Wistar rats (weight 200–250 g) were rand-
omized by weight and kept in groups of three or four animals 
per home cage (49 × 34 × 16 cm). Rats were maintained in a 
room under controlled temperature (22 ± 2 °C), on a stand-
ard 12 h light/dark cycle (lights on at 7 a.m.), with access 
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to water and chow ad libitum during the whole experiment. 
All experiments and procedures were approved by the Insti-
tutional Animal Care and Use Committee (GPPG-HCPA 
protocol no. 20,150,501). The experimental protocol com-
plied with the ethical and methodological standards of the 
ARRIVE guidelines [38].

Experimental Design

The rats were assigned into five groups: control (CT), neu-
ropathic pain (NP), neuropathic pain plus transcranial direct 
current stimulation (NPtDCS), neuropathic pain plus alco-
hol (NPAL), and neuropathic pain plus alcohol plus tDCS 
(NPAL tDCS). During the establishment of NP (from 1 to 
15th after the surgery procedure), the rats were given oral 
alcohol gavage. After that, the rats were subjected to a daily 
tDCS session for eight consecutive days. The nociceptive 
test (hot plate) was performed at baseline, 16 days after the 
CCI surgical procedure, immediately after the last session of 
tDCS, and 24 h after the last session of tDCS. The rats were 
killed by decapitation 48 h post-treatment (Fig. 1). For all 
procedures (nociceptive and biochemical assays), the experi-
menter was blinded to the group of rats being tested.

Transcranial Direct Current Stimulation

The rats were subjected to bimodal tDCS (0.5 mA) for 
20 min per day for 8 days under immobilization from the 
17th - to 24th -day post-CCI surgery [37, 39]. The cathode 
was positioned at the midpoint between the lateral angles 
of both eyes (supraorbital area) and the anode was placed 
on the head using landmarks of the neck and shoulder lines 
as a guide (the anterior and posterior regions in the mid-
line between the two hemispheres of the parietal cortex, as 
described by Takano et al. [40]. Adapted electroencephalo-
gram electrodes (1.5 cm2) with a conductive hydrogel were 
fixed to their heads with an adhesive tape to prevent removal 

and connected to a battery-driven stimulator to deliver a 
constant electrical current. The rats had their heads shaved 
for better adherence. To deliver the current, animals had to 
be immobilized using a soft cloth during stimulation. The 
stimulation was performed at the same time of day (11 a.m.) 
by the same researcher. This technique has been applied by 
our research group and has been found to show long-lasting 
effects and is able to mirror human tDCS protocols used in 
pain treatment [35, 41].

Neuropathic Pain Model: Chronic Constriction Injury 
(CCI) of the Sciatic Nerve

Chronic constriction injury (CCI) was induced as described 
by Bennett [42]. Briefly, each rat was anesthetized by isoflu-
rane inhalation (5% for induction and 2.5% for maintenance). 
The common sciatic nerve was then exposed and freed from 
the adherent tissue at the mid-thigh by blunt dissection of 
the biceps femoris muscle. Three loose ligatures were placed 
1 mm apart using a chromic gut suture vicryl 4.0. After the 
procedure, the wound was closed with non-absorbable mono 
nylon yarn 4.0. Rats undergoing surgery received intraperi-
toneal tramadol (5 mg/kg) for pain relief immediately after 
surgery and once every 12 h for 2 days after CCI induction 
[43].

Model of Exposure to Alcohol

For alcohol administration, the ethanol was diluted daily 
with distilled water to prepare a 20% v/v solution. It was 
then delivered by oral gavage in a volume of 4 g/kg body 
weight according to previous studies [15, 44]. Administra-
tions were performed from the 1st until the 15th day after 
the surgical procedure, between 8 a.m. and 10 a.m. The rats 
were weighed every 3 days to allow for adjustment of the 
volume/weight administered.

Fig. 1   Experimental design. CCI chronic constriction injury, tDCS transcranial direct current stimulation
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Behavioral Tests

The behavior test (hot plate) was performed at baseline, 16 
days post-surgery, as well as immediately and 24 h after the 
last tDCS session.

Thermal Hyperalgesia (Hot Plate Test)

This test was carried out to determine changes in latency 
such as licking or jumping responses, which resulted from 
supraspinal sensory integration and indicate modifications 
in the supraspinal process [45–47]. The rats were accli-
mated 24 h prior to the test for a period of 5 min inside the 
switched apparatus. During the test, the plate temperature 
was maintained at 55 °C ± 0.1. The rats were placed in a 
transparent polypropylene funnel on the heated surface. The 
time between placing the animals and the beginning of paw 
withdrawal or “tapping” was recorded as response latency 
in seconds, with each being a single measurement in each 
evaluation period [48, 49].

Sample Collection

The rats were killed by decapitation 48 h after the last treat-
ment session with tDCS, and the central nervous system 
structures (cerebral cortex and brainstem) were removed and 
frozen at − 80 °C for further analysis.

Biochemical Assays

Nerve growth factor (NGF), IL-1α, IL-1β, and IL-10 lev-
els were determined by sandwich ELISA using monoclonal 
antibodies specific for each measurement (R&D Systems, 
Minneapolis, United States). Total protein was measured 
using the Bradford’s method using bovine serum albumin as 
a standard [50] Results were expressed as pg/mg of protein.

Statistical Analysis

The behavioral tests were analyzed using generalized esti-
mated equations (GEE) by Bonferroni. The biomarkers data 
were analyzed through a one-way ANOVA followed by a 
Student-Newman-Keuls test. P-values < 0.05 were consid-
ered statistically significant. SPSS 19.0 for Windows was 
used for statistical analyses.

Results

Thermal Hyperalgesia

There was no difference between the groups at baseline 
(GEE: Wald χ2 = 79.99, P = 0.60). There was an inter-
action between group and time (GEE/Bonferroni; Wald 
χ2 = 79.99, P = 0.001). The neuropathic pain groups dis-
played thermal hyperalgesia 16 days after CCI surgery as 
indexed by a decrease in the nociceptive threshold (Fig. 2), 
thus confirming the effectiveness of neuropathic pain induc-
tion. This effect was immediately reversed 24 h after the end 
of tDCS treatment. However, this analgesic tDCS effect was 
only observed 24 h post tDCS treatment in the neuropathic 
pain + alcohol + tDCS group (Fig. 2).

Central NGF Levels

There was an increase in cerebral cortex NGF levels in the 
neuropathic pain + alcohol group, when compared to the 
control group. In addition, neuropathic pain + tDCS and neu-
ropathic pain + alcohol + tDCS groups displayed increased 
NGF levels compared to the control and neuropathic pain 
groups (one-way ANOVA/SNK, F(4,27) = 7.876, P = 0.001; 
Fig. 3, Panel A). There were no differences among the 

Fig. 2   Thermal hyperalgesia 
assessed by hot plate test at 
baseline, 16 days after the CCI 
model, immediately, and 24 h 
after bicephalic tDCS treatment 
(n = 36). Data are presented as 
mean ± standard error of the 
mean (SEM) of paw withdrawal 
latency (s). Control-Group 
(CT), Neuropathic pain (NP), 
Neuropathic pain + tDCS (NPt-
DCS), Neuropathic pain + Alco-
hol (NPAL) and Neuropathic 
pain + Alcohol + tDCS 
(NPALtDCS). *There was an 
interaction between group and 
time (GEE/Bonferroni, Wald 
χ2 = 79.99, P = 0.001)
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groups in terms of NGF levels in the brainstem (one-way 
ANOVA, F(4,27) = 2.371; P = 0.07, Fig. 3, Panel B).

Central IL‑1α Levels

There was an increase in IL-1α levels in the cerebral cortex 
in the neuropathic pain + tDCS and neuropathic pain + alco-
hol + tDCS groups compared to the other groups (one-way 
ANOVA/SNK, F(4,27) = 5.364, P = 0.003; Fig. 4, Panel A). 
There were no differences among groups in terms of IL-1α 

levels in the brainstem (one-way ANOVA, F(4,27) = 1.035, 
P = 0.40; Fig. 4, Panel B).

Central IL‑1β Levels

There was increase in IL-1β levels in the cerebral cortex in 
the neuropathic pain + tDCS and neuropathic pain + alco-
hol + tDCS groups compared to the control group (one-way 
ANOVA/SNK, F(4,27) = 3.391, P = 0.02; Fig. 5, Panel A). 
There were no differences among groups in terms of IL-1β 

Fig. 3   NGF levels in the cerebral cortex (Panel A) and brainstem 
(Panel B) of rats subjected to CCI and alcohol abstinence as well 
as tDCS treatment. Data are presented as mean ± standard error of 
the mean (SEM) of pg/mg of protein. Control-Group (CT), Neuro-
pathic pain (NP), Neuropathic pain + tDCS (NPtDCS), Neuropathic 
pain + Alcohol (NPAL) and Neuropathic pain + Alcohol + tDCS 
(NPALtDCS).  Panel A: There were significant differences among 
groups in terms of cerebral cortex NGF levels (one-way ANOVA/
SNK, P = 0.001).*—significant difference from CT group, and **—
significant difference from CT and NP group Panel B: There were no 
differences among the groups in terms of brainstem NGF levels (one-
way ANOVA, F(4,27) = 2.371; P = 0.07)

Fig. 4   IL-1α levels in the cerebral cortex (Panel A) and brainstem 
(Panel B) of rats subjected to CCI and alcohol abstinence as well 
as tDCS treatment. Data are presented as mean ± standard error of 
the mean (SEM) of pg/mg of protein. Control-Group (CT), Neuro-
pathic pain (NP), Neuropathic pain + tDCS (NPtDCS), Neuropathic 
pain + Alcohol (NPAL) and Neuropathic pain + Alcohol + tDCS 
(NPALtDCS).  Panel A: There was a significant difference in IL-1α 
levels in the cerebral cortex between groups (one-way ANOVA/
SNK, F(4,27) = 5.364, P = 0.003).  *Significant difference from CT, 
NP, and NPAL groups. Panel B: There was no difference among the 
groups in terms of IL-1α levels in the brainstem (one-way ANOVA, 
F(4,27) = 1.035, P = 0.40)
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levels in the brainstem (one-way ANOVA, F(4,27) = 1.776, 
P = 0.16; Panel B).

Central IL‑10 Levels

There were no differences among the groups in terms of 
IL-10 levels in the cerebral cortex (one-way ANOVA, 
F(4,27) = 2.335, P = 0.08; Fig. 6, Panel A). In the brainstem, 
there was an increase in IL-10 levels in the neuropathic 

pain + tDCS group compared to other groups (one-way 
ANOVA/SNK, F(4,27) = 5.686, P = 0.002; Fig. 6, Panel B).

Discussion

The present study showed that bimodal tDCS induced short- 
and long-term antinociceptive effects in rats with neuro-
pathic pain. However, when alcohol abstinence was associ-
ated with CCI, only long-term effects were observed. These 

Fig. 5   IL-1β levels in the cerebral cortex (Panel A) and brainstem 
(Panel B) of rats subjected to CCI and alcohol abstinence as well 
as tDCS treatment. Data are presented as mean ± standard error of 
the mean (SEM) of pg/mg of protein. Control-Group (CT), Neuro-
pathic pain (NP), Neuropathic pain + tDCS (NPtDCS), Neuropathic 
pain + Alcohol (NPAL) and Neuropathic pain + Alcohol + tDCS 
(NPALtDCS). Panel A: There were differences among the groups 
in terms of IL-1β levels in the cerebral cortex (one-way ANOVA/
SNK, P = 0.02).  *Statistically significant difference from the CT 
group. Panel B: There were no differences among the groups in terms 
of IL-1β levels in the brainstem (one-way ANOVA, F(4,27) = 1.776, 
P = 0.16)

Fig. 6   IL-10 levels in the cerebral cortex (Panel A) and brainstem 
(Panel B) of rats subjected to CCI and alcohol abstinence as well 
as tDCS treatment. Data are presented as mean ± standard error of 
the mean (SEM) of pg/mg of protein. Control-Group (CT), Neuro-
pathic pain (NP), Neuropathic pain + tDCS (NPtDCS), Neuropathic 
pain + Alcohol (NPAL) and Neuropathic pain + Alcohol + tDCS 
(NPALtDCS). Panel A: There were no differences among the groups 
in terms of IL-10 levels in the cerebral cortex (one-way ANOVA, 
F(4,27) = 2.335, P = 0.08). Panel B: There was a significant difference 
in IL-10 levels in the neuropathic pain + tDCS group compared to 
other groups (one-way ANOVA/SNK, F(4,27) = 5.686, P = 0.002). 
*Significant difference from CT, NP, NPAL, and NPALtDCS groups
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results corroborate our previous research which showed 
that tDCS may have analgesic effects in different chronic 
pain models [26, 37, 39]. Besides, tDCS treatment induced 
modulation of central levels of interleukins (IL-1α, IL-1ß, 
and IL-10). Cerebral cortex NGF levels were increased by 
tDCS treatment and alcohol withdrawal, with the effect of 
the latter intensified when simultaneously administered with 
the former.

This study interestingly found that tDCS-induced analge-
sia was delayed by alcohol withdrawal. It is well known that 
alcohol consumption induces depressant effects in the cen-
tral nervous system, modulates pain thresholds, and displays 
analgesic and anti-inflammatory effects [51, 52]. As such, its 
withdrawal associated with chronic pain drives an imbalance 
between excitatory/inhibitory neurotransmission in different 
cortical and subcortical brain regions, such as the medial 
prefrontal cortex, nucleus accumbens, and amygdala, which 
are connected to important brain regions related to nocicep-
tion/analgesia, including the periaqueductal gray and rostral 
ventromedial medulla. The delayed tDCS-induced analge-
sia may be due to its neuromodulatory role, after-effects, 
as well as its non-specific modes of action [53]. Alcohol is 
a psychoactive substance that acts on multiple important 
neurotransmitter systems, including the GABAergic, glu-
tamatergic, serotonergic, and opioidergic systems [54–58]. 
Indeed, GABAA and NMDA receptors participate in alcohol-
induced analgesia and alcohol withdrawal-induced hyperal-
gesia/hyperexcitability [59–64]. In this way, we can suggest 
that the imbalance between these neurotransmitter systems 
could be involved in the delayed response observed in tDCS-
induced analgesia.

Despite a previous study showing an increase in the ther-
mal nociceptive threshold induced by alcohol withdrawal 
in rats not experiencing pain as evaluated by the tail-flick 
latency test [15], effects of alcohol withdrawal effect upon 
thermal hyperalgesia were not observed in the current study. 
This difference can be interpreted in two ways: (a) differ-
ent status of the animals, with a group experiencing pain 
and the other not experiencing pain; and (b) differences in 
evaluated behavior, nociceptive thresholds, and the degree of 
hyperalgesia. While the nociceptive threshold is the latency 
of response to the nociception stimulus, hyperalgesia is an 
abnormal increase in the sensitivity to nociceptive stimuli, 
including different activation of fibers and supraspinal 
responses triggered by each test [65]. In addition, our data 
are in agreement with those of previous studies, which sug-
gested that alcohol withdrawal exacerbates the symptoms 
of mechanical hyperalgesia without affecting the thermal 
response [66]. In contrast, previous studies have shown 
mechanical and thermal hypersensitivity in Sprague-Dawley 
rats subjected to alcohol withdrawal [67, 68]. On the other 
hand, studies have suggested pain relief induced by alco-
hol, but the mechanisms of action as well as the variables 

involved are still unclear [69–72]. It is important to note that 
the inconsistencies found in the literature may be related to 
the protocol for alcohol use, withdrawal times, as well as 
the strains and baseline status of the animals. Currently, it 
is believed that neurotransmitter and inflammatory systems 
are common pathways involved in the pathologies of both 
chronic pain [24, 37] and alcohol withdrawal [15, 73]. In 
this study, we showed that tDCS improved thermal hyperal-
gesia and modulated central biomarker levels, corroborating 
previous studies from our research group [24, 30, 32, 36, 
37]. tDCS treatment increased IL-1α in the cerebral cortex 
in rats with chronic pain and alcohol abstinence. Previous 
studies have shown that IL-1α has antiallodynic and antihy-
peralgesic effects in a rat neuropathic pain model [74]. Thus, 
it is likely that an increase in central IL-1α levels might be 
the mechanism underlying the pain relief induced by tDCS 
treatment.

It is important to note that the increased brainstem IL-10 
levels found in the current study in the neuropathic pain 
group may have also contributed to the tDCS-induced 
antinociceptive effect once it takes effect on key centers 
for pain modulation [25, 37, 75]. In contrast, alcohol absti-
nence attenuated the effects of tDCS on IL-10 levels with-
out leading to changes in long-lasting tDCS antinociceptive 
effects. On the other hand, a previous study using a different 
alcohol protocol showed an increase of IL-10 levels in the 
hippocampus, prefrontal cortex, and brainstem in rats after 
alcohol abstinence [15]. Altogether, these findings highlight 
an important interaction between the immune system and 
alcohol exposure/withdrawal.

It is interesting to note that IL-1α and IL-1ß act on the 
same receptor to differentially influence nociceptive trans-
mission and neuropathic pain responses [74, 76, 77]. As 
such, neurochemical measures were performed 48 h after the 
end of tDCS treatment or 26 days after CCI Model induction 
in the current study. This corroborates our previous find-
ings that the levels of substances associated with neuropathic 
pain did not change when measured at the same time point. 
However, 29 days after CCI, neuropathic pain rats showed 
an increase in IL-1ß levels in the cerebral cortex. [37]. On 
the other hand, the tDCS group showed an increased level 
of IL-1 ß in rats with neuropathic pain independent of alco-
hol abstinence. Previous studies have shown that intrathe-
cal IL-1ß administration in normal and inflamed rats led 
to different effects [78] without changing the latencies of 
paw withdrawal in normal rats while producing significant 
antinociception when administered intrathecally in rats with 
peripheral inflammation (carrageenan model). Considering 
the dual effect of IL-1ß, we cannot disregard the involvement 
of this interleukin in the observed antinociceptive effect in 
the current study. Analysis of the results of interleukin mod-
ulation should thus be related to the neuroimmunomodula-
tory effects of tCDS.
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NGF mediates neuronal activity as well as the synaptic 
plasticity of neurons [79]. In the current study, tDCS was 
able to cause analgesia in rats with neuropathic pain, with 
this effect linked to elevated levels of NGF in the cerebral 
cortex. In addition, we found that alcohol withdrawal also 
increased NGF levels in the cerebral cortex of rats with neu-
ropathic pain, with the alcohol withdrawal effect intensified 
when associated with tDCS. A previous study showed that 
chronic exposure to ethanol decreased NGF levels but that 
this effect was time- and site-dependent, with effects vary-
ing depending on the length of alcohol exposure and struc-
tures analyzed [80]. Besides, chronic consumption of high 
amounts of alcohol in rats leads to a transient increase in 
NGF levels in distinct brain regions [81]. We also highlight 
that the changes in NGF levels observed in the study may 
have been influenced by the length of alcohol exposure or 
withdrawal. tDCS also triggers a central neuromodulatory 
effect once it modulates NGF levels independent of the alco-
hol withdrawal effect.

Conclusions

The rationale of the current study was that pain from chronic 
conditions can be relieved by alcohol consumption. How-
ever, this substance is highly addictive for humans and ani-
mals. In this context, it is important to understand the central 
effects induced by alcohol exposure or withdrawal. In the 
same line, tDCS as a central neuromodulatory technique 
may benefit patients suffering both from alcohol abuse and 
chronic neuropathic pain. Besides, alcohol abuse and neu-
ropathic pain treatments are oftentimes refractive to phar-
macological treatment. Thus, tDCS may be a promising 
non-pharmacological therapeutic approach for both chronic 
conditions. This study showed that bimodal tDCS was able 
to effectively induce analgesia in rats with neuropathic pain, 
which was delayed by alcohol abstinence. We suppose that 
the analgesic effect of tDCS might be related to increased 
central levels of IL-1α, IL-10, and NGF, since its antinoci-
ceptive role has been well described in key pain pathways 
likely due to its capacity to neuromodulate immune signal-
ing. Concerning alcohol exposure/withdrawal, the increase 
in central NGF levels suggests that alcohol-induced neuro-
plasticity might contribute to this dependence taking into 
consideration its broad interference upon biological pro-
cesses. Overall, further research is needed to improve and 
broaden existing knowledge regarding tDCS and the effects 
of alcohol on pain.
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