
Abstract. Background/Aim: Magnetic stimulation is used
in the treatment of a diversity of diseases, but a complete
understanding of the underlying mechanisms of action
requires further investigation. We examined the effect of
static magnetic stimulation (SMS) in different cell lines.
Materials and Methods: A culture plate holder with attached
NeFeB magnets was developed. Different magnetic field
intensities and periods were tested in tumoral and non-
tumoral cell lines. To verify the cellular responses to SMS,
cell viability, cell death, cell cycle and BDNF expression
were evaluated. Results: Exposure of SH-SY5Y cells to SMS
for 24 hours led to a decrease in cell viability. Analysis 24
h after stimulation revealed a decrease in apoptotic and
double-positive cells, associated with an increase in the

number of necrotic cells. Conclusion: The effects of SMS on
cell viability are cell type-specific, inducing a decrease in
cell viability in SH-SY5Y cells. This suggests that SMS may
be a potential tool in the treatment of neuronal tumors.

Over the years, several electrophysiological studies have
expanded the understanding of normal brain activity and its
pathological conditions. Technological advances have been
an important part of the improvement of therapies and
research in several areas such as neurology, psychology, and
psychiatry (1). Brain stimulation is a tool for modulating
brain function, allowing the association of activity patterns
and cognitive function to establish cause-consequence
relations (2). Brain stimulation techniques are usually
divided into two different types: invasive and non-invasive
(NIBS) techniques. Whereas invasive techniques involve
greater risk for patients, as demonstrated by studies that
compare the impact of different procedures (3, 4), non-
invasive techniques have shown favorable results together
with lower risks (3, 5). Indeed, NIBS’s application has been
described in different scenarios: 1. Cognitive improvement
on depression (6, 7); 2. Improvement in post-stroke recovery
(8); 3. Improvement of the memory and the quality of life of
patients with Alzheimer’s disease (9, 10); 4. Relief of
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chronic pain (11, 12). These findings, alongside a reduction
in induced adverse effects, set NIBS as promising
alternatives for the treatment of several diseases and
neurological disorders (13). 

Recently, in vitro studies reporting stimulation using non-
invasive techniques have been reported. Potential uses and
effects of magnetic stimulation over cellular processes have
been described, particularly using static magnetic stimulation
(SMS). Apart from physiological and homeostatic events, such
as wound healing (14), SMS has shown effects in cancer
models of glioblastoma (15), adenocarcinoma (16) and
leukemia (17), where it has been shown to control the cell
cycle, reduce drug resistance to cisplatin and enhance natural
killer cell cytotoxicity against tumor cells, respectively.

SMS, unlike repetitive transcranial magnetic stimulation
(rTMS) – in which changes in the magnetic field create an
electric current through electromagnetic induction - does not
induce electric currents; however, it has been shown to
influence a variety of biological systems (18). Transcranial
stimulation with a static magnetic field applied in humans
reduces the excitability of the motor cortex for a few minutes
after the end of the stimulation (19). Few studies have
explained the effects of SMS on nervous cells. A comparison
between renal cells and cortical astrocytes in rats showed
that SMS decreases proliferation and increases apoptosis and
necrosis in renal treated cells, while the opposite effect was
seen in cortical astrocytes; stimulated cells showed more
proliferation and less cell death (20). These results suggest
that different cell types can respond differently to SMS.

Immortalized cell lines are widely used models for in vitro
studies, for their ease of maintenance, high proliferative
rates, highly homogenous and reproducible results (21). In
this context, the human neuroblastoma cell line SH-SY5Y is
often used for neuronal cell studies, since SH-SY5Y cells
can be differentiated in dopaminergic neurons (22).

This study aimed to establish a method for in vitro SMS,
to investigate its effects on cell viability, cell death and the
cell cycle of different cell lines, and determine whether the
responses are cell type specific.

Materials and Methods

Cell culture and differentiation. Adipose-derived mesenchymal stem
cells, human vaginal malignant melanoma HMVII cell line and
human neuroblastoma SH-SY5Y cell line, were obtained from the
Banco de Células do Estado do Rio de Janeiro (Rio de Janeiro,
Brazil). Mesenchymal stem cells were maintained in Dulbecco’s
Modified Eagle Medium (DMEM) supplemented with 20% heat-
inactivated Fetal Bovine Serum (FBS) (GIBCO) and 1%
Penicillin/Streptomycin (GIBCO) at 37˚C and 5% CO2. HMVII
cells were maintained in Roswell Park Memorial Institute Medium
(RPMI) 1640 (GIBCO) supplemented with 10% heat-inactivated
FBS and 1% penicillin/streptomycin (GIBCO) at 37˚C and 5% CO2.
SH-SY5Y cells were maintained in 1:1 Ham’s F12 and DMEM Low

Glucose (GIBCO) supplemented with 10% heat-inactivated FBS
(GIBCO), and 1% penicillin/streptomycin (GIBCO) at 37˚C and 5%
CO2. Cells were passaged at 80-90% confluency. Cells were seeded
in 24-well plates (using only 6 wells per plate, according to Figure
1) at a density of 1×106 cells per well and kept at 37˚C and 5%
CO2. Differentiation was induced 24 h after plating using 1:1 Ham’s
F12 and DMEM Low Glucose (GIBCO) supplemented with 1%
heat-inactivated FBS (GIBCO), 1% penicillin/streptomycin
(GIBCO) and 10 μM Retinoic Acid (RA). The RA-containing
culture medium was replaced every three days until day 10.
Evaluation of cell morphology and differentiation was done using
phase-contrast light microscopy.

Static magnetic stimulation (SMS). Stimulation with SMS was done
using a specially designed stand for attachment of standard 24 well
plates. Each stand contains six NdFeB (neodymium-iron-boron)
magnets with cylindrical shape (12 mm diameter and 6 mm height),
spaced out so that the magnetic fields do not interact (Figures 1 and
2). The distribution of the magnets is made so that they are coupled
exactly to 6 wells of a 24-well plate. Each 24-well plate, therefore,
is seeded in only 6 wells. There is an adjustment for the distance
between the culture plate and the stand to guarantee the strength of
the magnetic field. The magnetic field traversed a layer or several
layers of cells, in the same way, i.e., cell grouping, or density does
not change the field’s intensity. The adjustment of the magnetic field
was performed with a customized screw, and the measurement of
the magnetic field was done using a Hall Effect Gaussmeter
(Wuntronic GmbH, Germany), available at the HCPA Biomedical
Engineering Laboratory. Stimulation for the initial MTT assay using
only the SH-SY5Y cell line was done using intensities of 0.1 T, 0.2
T and 0.3 T (±2% tolerance), for 60 min. The remaining
stimulations were performed for 24 h from plating, with an intensity
of 0.3 T. Control groups did not receive stimulation. The 48-h group
received stimulation during the first 24 h only.

MTT assay. The MTT assay 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) (Sigma Aldrich, Brazil) is a
colorimetric assay that reflects cell viability. Immediately and 24 h
after SMS exposure, cells were incubated with MTT in saline (132
mM NaCl, 4 mM KCI, 1 mM CaCl2, 6 mM glucose, 10 mM
HEPES, pH 7.4). Without removing the medium from the cells, 0.75
mg/ml MTT was added, incubated for 1 h at 37˚C and dimethyl
sulfoxide (DMSO) was added for cell disruption. The absorbance
was determined at a wavelength of 570 nm, using a wavelength of
620 nm as a reference in a spectrophotometer. Cell viability was
expressed as a percentage relative to the absorbance determined in
the control cells.

Cell death (PI/Hoechst staining). Viable and dying cells were
identified after staining of the nuclei with Propidium Iodide (PI)
(Thermo Fischer, Carlsbad, CA, USA) and Hoechst 33342 (HO)
(Sigma Aldrich, Willow Creek Road, Eugene, EUA). The cells were
incubated in a solution containing PI and HO 5 mg/ml for 15 min
and visualized by fluorescence microscopy. To quantify the number
of dead/alive cells, ten photos per well were taken, randomly
chosen. Images were analyzed using ImageJ software.

Cell death (Annexin-V/PI staining). Annexin-V/PI staining was
performed to obtain a more detailed profiling of SH-SY5Y cell death.
Apoptotic cells lose the asymmetric disposition of membrane
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components and proteins, such as phosphatidylserine residues, usually
found on the inside sheet of the plasma membrane. Upon entering
apoptosis, these proteins are exposed to the outer sheet of the plasma
membrane, where it is made available for Annexin-V-FITC staining.
On the other hand, necrotic cells lose membrane integrity and are,
therefore, positively stained using PI. In this manner, the different
events surrounding cell death can be distinguished from one another
according to different staining profiles. Double-positive cells do not
have a clear phenotype. These cells can be either late-stage apoptotic
or necrotic cells. Apoptotic cells (Annexin-V+/PI–), necrotic cells
(Annexin-V–/PI+), and alive cells (Annexin-V–/PI–) are quantified
through flow cytometry. After treatments, the samples were washed
with PBS, resuspended in 100 μl of Annexin-V Binding Buffer 1X
and incubated with 2.5 μl of Annexin-V FITC for 15 min, at room
temperature, protected from light. The samples were incubated in
Propidium Iodide solution (2 μg/ml), an additional fluorescent
marker, in Annexin-V Binding Buffer 1X for 5 min at 4˚C protected
from light. Alive cells show membrane integrity, which prevents PI
from entering the cell and staining nucleic acids (RNA and/or DNA).
The samples were immediately analyzed by flow cytometry using the
Attune® Acoustic Focusing Cytometer (Applied Biosystem- Life-
Thermo). As an experimental control, apoptosis was induced using
20% DMSO for 15 min and necrotic cells were obtained by heating
the cells at 70˚C for 15 min.

Cell cycle. Treated cells were resuspended in 100 μl of PBS and 900
μl of ice-cold 70% ethanol  were added and incubated for 1 h at
4˚C. Samples were centrifuged at 5000 rpm for 10 min and the
pellet was washed three times in PBS 1X and resuspended in a
standard staining solution (0.1% Triton X-100, 100 μg/ml PI and 50
μg/ml DNAse-free RNAse) for 15 min at 37˚C, protected from
light. Samples were resuspended in PBS for immediate flow
cytometry analysis using the Attune® Acoustic Focusing Cytometer
(Applied Biosystem- Life-Thermo).

BDNF expression. Total RNA was extracted as recommended by the
manufacturer using the RNeasy Mini Kit (Qiagen, Austin, TX, USA).
Complementary DNA was synthesized from 1 μg RNA using
SuperScriptVILOtm (Invitrogen, Brazil). PCR reactions were prepared
using MasterMix TaqMan (Applied Biosystems, Germantown, MD,

USA) and StepOne™ Real-Time PCR System (Applied Biosystems).
Real-time PCR was optimized to run under the initial incubation
conditions of 95˚C for 2 min, denaturation at 95˚C for 15 s, annealing
at 60˚C for 1 min, for 45 cycles. The expression of the BDNF gene was
normalized with the Glyceraldyehyde-3-phosphate Dehydrogenase
(GAPDH) with ΔΔCT correlation.

Statistical analysis. The first analyses were normality and
lognormality to choose between a parametric or non-parametric test.
For parametric samples, data are presented as mean±SD and
analyzed using Student’s t-test. For non-parametric samples, data
are presented as median (interquartile 25; interquartile 75) and
analyzed using Kruskal–Wallis followed by Mann–Whitney test.
Values of p<0.05 were considered significant. All analyses were
performed using the statistical software GraphPad Prism 8
(GraphPad Software, La Jolla, CA, USA).

Results

Cell viability and cell death. MTT was performed to evaluate
the SMS effects on the cell viability (Figure 3). SH-SY5Y
cells were stimulated with SMS for 60 min in three different
intensities (0.1 T, 0.2 T and 0.3 T). There was no significant
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Figure 2. Cell culture plate placed on SMS device.

Figure 1. Schematic for the static magnetic stimulation device.

Figure 3. Cell viability of SH-SY5Y cells exposed to different intensities
of SMS. Cells were exposed to 0.1 T, 0.2 T, 0.3 T SMS for 60 min and
analyzed using MTT. Results are presented in nm. Results are presented
in nm. Data are expressed as medians (interquartile 25; interquartile
75) (Kruskal–Wallis, p>0.05).



difference between control cells and cells exposed to the three
different SMS intensities (0.1 T, 0.2 T and 0.3 T) (Kruskal–
Wallis, p>0.05). Based on these results, the highest intensity
(0.3 T) and longer exposure time (24 h) were chosen for
further analysis of cell viability (Figure 4). SH-SY5Y cells,
evaluated immediately after 24 h of SMS exposure, presented
a significant decrease in viability when compared to the
control group (Student’s t-test, p<0.05). Stimulated SH-SY5Y
cells evaluated 24 h after SMS exposure did not present a
significant difference in viability when compared to the
control group (Kruskal–Wallis p>0.05). In differentiated SH-
SY5Y, adipose-derived mesenchymal and HMVII cells, no
difference in viability was found after SMS exposure for both
evaluated periods (immediately and after 24 h of SMS
exposure) (Student’s t-test or Kruskal–Wallis, p>0.05).

In SH-SY5Y cells, PI/HO analysis of cell death (Figure 5)
showed no significant difference after SMS exposure,
suggesting there was no increase in cell death in these cells

(Student’s t-test or Kruskal–Wallis, p>0.05). Similarly, in
differentiated SH-SY5Y no difference was found (Student’s
t-test or Kruskal–Wallis p>0.05). Annexin-V/PI evaluation
(Figure 6) showed a decrease in apoptotic (Annex+/PI)
(1.594% to 0.004%, Figure 6B) and double-positive
(Annex+/PI+) cells (0.086% to 0.190%, Figure 6D), and an
increase in necrotic (Annex-/PI+) (0.359% to 1.580%, Figure
6C) SH-SY5Y cells exposed to SMS for 24 h and analyzed
24 h after the stimulation (48 h) (Kruskal–Wallis, p<0.05,
Figure 6). In groups evaluated immediately after 24 h of
exposure to SMS (24 h), there was a decrease in double-
positive (Annex+/PI+) cells (0.150% to 0.130%, Figure 6D).

Cell cycle (PI staining). Cell cycle analysis (Figure 7) of SH-
SY5Y cells showed no difference in the percentage of cells
in sub-G1, G1, S, G2 and >4N phases in both periods
analyzed (Student’s t-test, p>0.05), suggesting that exposure
to SMS does not alter cell cycle distribution.
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Figure 4. Cell viability of SH-SY5Y, differentiated SH-SY5Y, HMV II and MSCh cells exposed to 0.3 T (305 mT) SMS. MTT analysis was done
immediately after SMS exposure (24 h) and 24 h after SMS exposure (48 h). Results are presented as nm. In the MSCh, SH Dif and SH groups,
data are expressed as mean±SD. In the HMV II group, data are expressed as medians (interquartile 25; interquartile 75). *Indicates significant
difference when compared to the 24 h (-SMS) group (Student’s t-test, p<0.05).

Figure 5. Cell death of SH-SY5Y, differentiated SH-SY5Y, HMVII and MSCh cells evaluated by PI/HO staining, immediately after SMS exposure
(24 h) or 24 h after SMS exposure (48 h). Results are presented as percentages. In all groups, data are expressed as mean±SD. There was no
difference between groups (Student’s t-test, p>0.05).



BDNF expression. In SH-SY5Y cells, even though detection
of BDNF was successful (Figure 8), there was no difference
in cells exposed to SMS for both periods when compared to
control groups (Kruskal–Wallis, p>0.05). Although there was

no difference in BDNF expression between the stimulated
cells and the control, there was a difference between the
stimulated groups, which is expected, due to analysis in
different periods.
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Figure 6. Cell death of SH-SY5Y cells evaluated by Annexin-V/PI staining, immediately after SMS exposure (24 h) or 24 h after SMS exposure (48
h). A) Live cells (Annex-/PI–). B) Apoptotic cells (Annex+/PI–). C) Necrotic cells (Annex-/PI+). D) Double-positive cells (Annex+/PI+). *Indicates
significant difference when compared to the 24 h (-SMS) group (Kruskal–Wallis, p<0.05). #Indicates significant difference when compared to the
48 h (-SMS) group (Student’s t-test, p<0.05). Data are expressed as mean±SD/Data as expressed as median (interquartile 25; interquartile 75).

Figure 8. Gene expression analysis of BDNF gene in SH-SY5Y cells
after SMS exposure (24 h) or 24 h after SMS exposure (48 h). Data are
expressed as median (interquartile 25; interquartile 75). @Indicates
significant difference between cells exposed to 24 h of SMS and cells
exposed to 48 h of SMS (Kruskal–Wallis, p<0.05).

Figure 7. Cell cycle analysis of SH-SY5Y cells evaluated by PI staining,
immediately after SMS exposure (24 h) or 24 h after SMS exposure (48
h). Results are presented as percentages. Data are expressed as
mean±SD. There was no difference between the different times (Student’s
t-test, p>0.05).



Discussion

Our results demonstrated that SH-SY5Y cells exposed to
SMS for 24 h show a decrease in cell viability immediately
after the exposure (24 h). A previous study using glioblastoma
cells submitted to SMS for 24 h corroborates these findings
regarding cell viability (15). This effect on cell viability,
however, was not long-lasting, since 24 h after exposure
treated groups were not different from the control group. SH-
SY5Y cells did not show alterations in cell viability after
exposure to magnetic stimulation, emphasizing that magnetic
stimulation has cell type-dependent effects on cell viability.

PI/HO and Annexin-V/PI staining were performed in order
to evaluate cell death. Evaluation of cell death 24 h after
SMS exposure showed small differences compared to control
cells (showing a decrease in apoptotic and double-positive
cells, associated with an increase in necrotic cells).
Alongside cell death, cell cycle profiling was performed,
which indicated no changes in cell cycle distribution. 

Our results indicated that SMS effects may also extend
beyond the modulation of neuronal proliferation and plasticity.
Neurotrophins, such as the brain-derived growth factor
(BDNF), regulate the plasticity of the nervous system and are
overexpressed in several types of cancer (27, 28). In fact,
BDNF was initially characterized in oncogenic neuroblastoma,
a type of cancer in nervous tissue (28). Even though the
effects of SMS on nerve cells and brain tissues have been
extensively described (23, 29-37), we found no difference in
BDNF expression in SH-SY5Y cells exposed to SMS with the
exception of an expected difference from 24 to 48 h.

When comparing our findings on undifferentiated and
differentiated nerve cell lines only undifferentiated SH-SY5Y
cells were influenced by SMS. Both SH-SY5Y cell subsets
show differences ranging from polarization, number and
length of the processes to proliferation (21, 38, 39), which
may be distinctively affected by SMS. The difference in cell
viability responses to SMS may not be due to the selectivity
of action upon excitability (23) or other membrane channel-
related effects (18, 40, 41), but may also influence other
cellular processes. Indeed, SMS induces alterations in the
viability of SH-SY5Y cells in response to cisplatin (24),
having a modulatory effect on the cell’s response to several
pharmacological treatments, (42-47). Other effects of exposure
to SMS have already been described in other cellular
functions, such as ROS production (24), modulation of redox-
related enzymes (25), pro- and anti-inflammatory cytokine
release (24) and improvement in the killing function of NK
cell (17). Given the diversity of the processes affected by
SMS, changes in cell viability probably involve processes in
addition to cell death, cell cycle distribution and neurotrophin
production. Future studies, using higher intensities, as well as
a longer exposure times, are necessary to evaluate if this
technique induces or inhibits cell death. 

Conclusion

The different effects exerted by exposure to SMS provide
valuable information regarding the application potential of
SMS. This study demonstrated that, considering the analyzed
parameters, SMS is a potentially safe technique, at least in the
utilized protocol (0.3 T SMS/24 h). The decrease in SH-SY5Y
cell viability also shows potential for treatment of neuronal
tumors with SMS. Also, our results showed that the effect of
SMS is cell type specific. It is important to note that this is
one of the first studies showing SMS as a potential tool in the
treatment of neuronal tumors. Further investigations in this
area are still necessary to better understand the effects of SMS
exposure on cultured cells and in vivo models.
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